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Rayleigh (1883) observed that the frequency of parametrically excited capil- 
lary-gravity waves in a container of lateral dimensions large compared with the 
wavelength was only 75% of the frequency wo calculated from Kelvin’s dispersion 
relation for waves of the observed length, and attributed this discrepancy to friction. 
A boundary-layer calculation on the assumption that the free surface acts as an 
inextensible film (as is typical for water in the laboratory) yields a 10% reduction 
from wo. The remaining discrepancy may be plausibly attributed to a contamination- 
induced reduction of surface tension from the value assumed by Rayleigh, but the 
possibility remains that nonlinearity could account for a significant shift of the 
frequency from wo. The solution of the weakly nonlinear problem for parametrically 
excited capillary-gravity waves reveals that this shift is positive for Rayleigh’s data, 
whence the surface tension must have been even smaller than that inferred from 
Kelvin’s dispersion relation. This solution also suggests quantitative errors in the 
solutions of Ezerskii et al. (1986) and Milner (1991) for the limiting case of deep-water 
capillary waves. 

1. Introduction 
More than one-hundred years ago Lord Rayleigh (1883) repeated Faraday’s (1831) 

experiments on capillary-gravity waves on the surface of a liquid subjected to a 
vertical oscillation and confirmed Faraday ’s conclusion (which had been questioned 
by Matthiessen) that the frequency of the waves is one-half that of the excitation. 
Rayleigh’s container was a rectangular glass plate mounted on a vibrating iron bar ; 
the driving frequency was 213121~ = 31 Hz, the mean depth of the water was 
d = 0.0681 cm, and the observed wavelength was 2 x / k  = 0.848 cm. (Rayleigh does not 
give the lateral dimensions of his glass plate, but his discussion implies that they were 
large compared with l / k ,  and he does refer to related experiments with a ‘shallow 
pool of mercury 3” or 4“ in diameter. ’ Letting 2R = 9 cm and 2nlk = 0.848 cm, we 
have kR = 33, which seems amply large to justify the neglect of lateral boundaries. 
However, contact-line effects may be significant for some configurations ; see Douady 
(1990).) The corresponding natural frequency, as calculated by Rayleigh from 
Kelvin’s dispersion relation 

( p  = T / p  is the kinematic surface tension) using T = 74 dyn/cm, was 
w,/27c = 20.8 Hz. Rayleigh remarks that ‘This should have been 15.5; and the 
discrepancy is probably to be attributed to friction, whose influence must be to 
diminish the efficient depth and may easily rise to importance when the total depth 

w i  = ( g k +  p k 3 )  tanh kd (1) 
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is so small. ’ Whatever the cause, discrepancies of this order are rare in Rayleigh’s 
work and, on that ground alone, merit further investigation. 

The assumptions that friction is concentrated in thin (compared with i l k )  
boundary layers a t  the bottom and free surface and that the free surface acts as an 
inextensible film (as is typical for water) yield, through the extension to finite depth 
of Lamb’s (1932, $351) calculation, 

w = w , ( l - S )  = w , ,  S = ~ k ( 2 v / w ) ~ c o t h k d ( l + s e c h 2 k d )  (S< l ) ,  (2a,b) 

for the frequency of damped free waves, where w, is given by ( l ) ,  6 is the damping 
ratio, and v is the kinematic viscosity. Rayleigh’s data and v = 0.010 cm2/s imply 
S = 0.102; the corresponding boundary-layer thickness is (2v/w)i  = 0.014 cm. The 
ratio w l / w o  = 1 - 6 = 0.90 compares with the observed value of w / w o  = 0.75, whence 
Rayleigh’s hypothesis appears to be inadequate for the explanation of the observed 
discrepancy. 

Perhaps the simplest explanation for the remaining discrepancy is that the surface 
tension was lower than the 74 dyn/cm assumed by Rayleigh in his calculation of wo. 
The notional equality o,(l-S) = w yields T = 45 dyn/cm, and i t  is clear from 
Rayleigh’s subsequent (1  890) work that contamination could account for a reduction 
of this 0rder.t (Douady 1990 infers T = 29.5 dyn/cm from his measurements of 
capillary waves on ‘polluted water ’, and D. Henderson (private communication) 
infers T = 48 dyn/cm from her measurements of capillary waves on ‘tap water. ’) 
Still, there remains the possibility that  some part of the frequency shift could be 
associated with nonlinearity, and I therefore proceed to calculate the amplitude- 
induced frequency shift for laterally unbounded, standing waves with square 
symmetry (as observed by both Faraday and Rayleigh), driven by the vertical 
displacement a, cos 2wt, ka, 4 1 .  

Following Miles & Henderson (1990), I pose the free-surface displacement in the 
reference frame of the moving container in the form 

where the Yn constitute a complete set of normal modes, kn are the corresponding 
wavenumbers (the eigenvalues), and qn are the corresponding generalized coordi- 
nates. The free-surface displacement observed by Rayleigh (1883) comprised ‘two 
sets of stationary vibrations superposed, the ridges and furrows of the two sets being 
perpendicular to  one another, and usually parallel to the edges of the (rectangular) 
plate. ’ The corresponding pattern of squares is described by the normal mode 

Y, = coskx+cosky (k, = k), (4) 

where x and y are Rayleigh’s Cartesian coordinates. 
The complete set of normal modes comprises the products of cos Zkx or sin Zkx and 

cosmky or sinmky, where 1 and m are integers. The participating members are 
determined by the requirement that the correlation coefficient (v Yn), which 
measures the nonlinear coupling between the primary mode Y, and the secondary 

t Rayleigh cites his 1883 paper in his 1890 paper but does not mention the possibility that 
contamination could account for the discrepancy that he had earlier attributed to friction. In The 
Theory ofSound (1945, §354), he says (in reference to his 1883 experiments) only that ‘The violence 
of the vibrations and the small depth of the liquid interfere with the accurate calculation of 
frequency on the basis of the observed wavelength. ’ 
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mode Y,, differ from zero (but Yo = 1 is excluded by conservation of mass). Choosing 
n = k i / k 2 ,  we obtain 

!Pa = 2coskxcosky (k, = d2k) ,  Y, = cos2kx+cos2ky (k, = 2k). (5a, b )  

Proceeding as in $92 and 3 of Miles & Henderson (1990) and posing 

ql = a cos (wt + 4) (ka < l ) ,  (6) 

w2/w: = 1 -&4(kacothkd)2, (7) 

where a and 4 are the amplitude and phase of the primary mode, I obtain 

where 

-+(28- K2)-1(28-3P)2-& 1 + - K4)-’(3 - p)2, (8) 

1 +nk2 T = tanh kd, k = k ( p / g ) i  = kl, ,  K, = ~ (n = 2,4) .  
d2 tanh kd 

S -  
tanh d2kd ’ l + k 2  

(9a-4 

The hypothesis that the primary mode dominates the secondary modes fails in the 
neighbourhood of K, = 1 + T2 owing to the resonance between modes 1 and 4 
(k, = 2k1 and w, = 2wl, corresponding to Wilton’s ripples), which is possible only if 
k < l Id2 .  The denominator 2S- K~ is positive-definite, whence resonance between 
modes 1 and 2 is impossible. 

Rayleigh’s data yield kd = 0.50 and kl ,  = 2.0011.56 for pT = 74/45 dynlcm, for 
which A = -0.491-0.09. It then follows from (7)  that, since A < 0, nonlinearity 
cannot account for w / w l  < 1 in Rayleigh’s experiments for the assumed range of kl,. 

The parameter A is relevant for any weakly nonlinear analysis of laterally 
unbounded capillary-gravity waves. Its presumable counterpart for deep-water 
capillary waves (kd ,  k l ,  % 1) has been calculated by Ezerskii et al. (1986) and Milner 
(1991)’ but their results, A = ( F + 2 R + S + T ) / o k 2  = 1.38 and A = T/4wk2 = 2.95 in 
their respective notations, differ from one another and from the limiting value 
A = 1.89 given by (8). I have been unable to resolve these discrepancies, although they 
appear to reflect computational errors rather than basic differences. 

A comment on the square pattern 
Faraday (1831) also observed a square pattern and remarks that ‘The hexagon, the 
square, and the equilateral triangle are the only figures that can fill an area perfectly. 
[Moreover,] the square and the triangle are the only figures that can allow for one half 
oscillating symmetrically with the other,. . , and of these two the boundary lines 
between squares are of shorter extent than those between equilateral triangles of 
equal area. It is evident therefore that one of these two will be finally assumed, and 
that this will be the square arrangement ; because then the fluid will offer the least 
resistance in its undulations to the motions of the plate. .. .’ The meaning of 
‘resistance’ in this context is unclear to me; however, the precedence of the square 
may be regarded as a consequence of the resonant interaction 

k l + k 2 + k , + k ,  = 0 ,  w,+w2 = w,+w,,  ( l o a f  b )  

where the k ,  are of equal magnitude k and inclined at ;(n- 1)n to the x-axis (+  , t , 
t , for n = 1,2,3,4), and w, = w .  In contrast, a resonant triad among waves of 
equal frequency is impossible. 
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